close
          Warning:
          Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.
      
 
    
      
      
      
        - Timestamp:
- 
            Jan 18, 2011, 3:41:33 PM (15 years ago)
        
- Author:
- 
          Víctor de Buen Remiro
        
- Comment:
- 
          
          
--
 
        
          Legend:
          
            - Unmodified
- Added
- Removed
- Modified
 
        
  
      - 
        
        
              
              
                
                  | v22 | v23 |  |  
                          | 15 | 15 | example, it can be very usefull to handle with data extrated from an stratified |  
                          | 16 | 16 | sample. |  
                          | 17 |  |  |  
                          | 18 |  | This class implements max-likelihood estimation by means of package  |  
                          | 19 |  | [wiki:OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian simulation |  
                          | 20 |  | using [wiki:OfficialTolArchiveNetworkBysSampler BysSampler]. |  
                          | 21 | 17 |  |  
                          | 22 | 18 | Let be |  
                  | … | … |  |  
                          | 61 | 57 | are compatible with lower and upper bounds [[BR]] [[BR]] |  
                          | 62 | 58 | [[LatexEquation( A \beta \le a )]] [[BR]] [[BR]] |  
                          |  | 59 |  |  
                          |  | 60 | This class implements max-likelihood estimation by means of package |  
                          |  | 61 | [wiki:OfficialTolArchiveNetworkNonLinGloOpt NonLinGloOpt] and bayesian simulation |  
                          |  | 62 | using [wiki:OfficialTolArchiveNetworkBysSampler BysSampler]. |  
                          |  | 63 |  |  
                          |  | 64 | The only mandatory members are the matrices of output and input of the regression |  
                          |  | 65 | {{{ |  
                          |  | 66 | #!cpp |  
                          |  | 67 | //Output vector 0 o 1 (mx1) |  
                          |  | 68 | VMatrix y; |  
                          |  | 69 | //Input matrix (mxn) |  
                          |  | 70 | VMatrix X; |  
                          |  | 71 | }}} |  
                          |  | 72 | You can also specify these other members: |  
                          |  | 73 | {{{ |  
                          |  | 74 | #!cpp |  
                          |  | 75 | //Weights  vector (mx1), default values are 1 |  
                          |  | 76 | VMatrix w=Rand(0,0,0,0); |  
                          |  | 77 | //Name of output |  
                          |  | 78 | Text output.name = ""; |  
                          |  | 79 | //Names of input variables |  
                          |  | 80 | Set input.name = Copy(Empty); |  
                          |  | 81 | //Set of BysMcmc::@Bsr.TruncatedNormal |  
                          |  | 82 | Set prior = Copy(Empty); |  
                          |  | 83 | //Constraining matrices A*b<=a |  
                          |  | 84 | //Constraining coefficient matrix |  
                          |  | 85 | VMatrix A=Rand(0,0,0,0); |  
                          |  | 86 | //Constraining border vector |  
                          |  | 87 | VMatrix a=Rand(0,0,0,0); |  
                          |  | 88 |  |  
                          |  | 89 |  |  
                          |  | 90 | }}} |  
                          | 63 | 91 |  |  
                          | 64 | 92 | === Weighted Logit Regression === |