close
Warning:
Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.
- Timestamp:
-
Dec 20, 2010, 7:20:56 PM (15 years ago)
- Author:
-
Víctor de Buen Remiro
- Comment:
-
--
Legend:
- Unmodified
- Added
- Removed
- Modified
-
v1
|
v2
|
|
16 | 16 | User can and should define scalar truncated normal or uniform prior information and |
17 | 17 | bounds for all variables for which he/she has robust knowledge.[[BR]] [[BR]] |
18 | | [[LatexEquation( \beta_k \sim N\left(\nu_k, \sigma_k \right) )]] |
19 | | [[LatexEquation( l_k \le \beta_k \le u_k \wedge l_k < u_k)]] |
| 18 | [[LatexEquation( \beta_k \sim N\left(\nu_k, \sigma_k \right) )]] [[BR]] [[BR]] |
| 19 | [[LatexEquation( l_k \le \beta_k \le u_k \wedge l_k < u_k)]] [[BR]] [[BR]] |
20 | 20 | When [[LatexEquation( \sigma_k )]] is infinite or unknown we will express a uniform |
21 | 21 | prior. |
… |
… |
|
26 | 26 | |
27 | 27 | It's also allowed to give any set of constraining linear inequations [[BR]] [[BR]] |
28 | | [[LatexEquation( A \beta \le a )]] |
| 28 | [[LatexEquation( A \beta \le a )]] [[BR]] [[BR]] |
29 | 29 | |
30 | 30 | === Weighted Logit Regression === |