close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Version 18 and Version 19 of OfficialTolArchiveNetworkQltvRespModel


Ignore:
Timestamp:
Dec 22, 2010, 9:26:53 AM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkQltvRespModel

    v18 v19  
    6969In this case we have that scalar distribution is the logistic one.
    7070
     71''Scalar cumulant'': [[BR]]
    7172  [[LatexEquation( F\left(z\right) = \frac{1}{1+e^{-z}} )]] [[BR]] [[BR]]
    7273
     74''Scalar density'': [[BR]]
    7375  [[LatexEquation( f\left(z\right) = \frac{e^{-z}}{\left(1+e^{-z}\right)^2} )]] [[BR]] [[BR]]
    7476
     77''Scalar density derivative'': [[BR]]
    7578  [[LatexEquation( f'\left(z\right) = - f\left(z\right) F\left(z\right) {\left(1-e^{-z}\right)} )]] [[BR]] [[BR]]
    7679
     80''Logarithm of likelihood'': [[BR]]
    7781  [[LatexEquation( L\left(\beta\right)=\underset{i}{-\sum}w_{i}\left(\ln\left(1+e^{-x_{i}^{t}\beta}\right)+\left(1-y_{i}\right)x_{i}^{t}\beta\right) )]]
    7882
     83''Gradient'': [[BR]]
    7984  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{j}}=\underset{i}{\sum}w_{i}\left(\frac{e^{-x_{i}^{t}\beta}}{1+e^{-x_{i}^{t}\beta}}-\left(1-y_{i}\right)\right)x_{ij} )]]
    8085
    81   [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial_{j}}=\underset{k}{\sum}w_{k}\frac{-e^{-x_{k}^{t}\beta}}{\left(1+e^{-x_{k}^{t}\beta}\right)^{2}}x_{ki}x_{kj}=-\underset{k}{\sum}x_{ki}x_{kj}w_{k}\pi_{i}\left(1-\pi_{i}\right) )]]
     86''Hessian'': [[BR]]
     87  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial_{j}}=\underset{k}{\sum}w_{k}\frac{-e^{-x_{k}^{t}\beta}}{\left(1+e^{-x_{k}^{t}\beta}\right)^{2}}x_{ki}x_{kj}=-\underset{k}{\sum}x_{ki}x_{kj}w_{k}\pi_{k}\left(1-\pi_{k}\right) )]]
    8288
    8389From the standpoint of arithmetic discrete numerical calculation must take into account that[[BR]]
     
    100106In this case we have that scalar distribution is the standard normal one.
    101107
     108''Scalar cumulant'': [[BR]]
    102109  [[LatexEquation( F\left(z\right) = \Phi\left(z\right) )]] [[BR]] [[BR]]
    103110
     111''Scalar density'': [[BR]]
    104112  [[LatexEquation( f\left(z\right) = \phi\left(z\right) )]] [[BR]] [[BR]]
    105113
     114''Scalar density derivative'': [[BR]]
    106115  [[LatexEquation( f'\left(z\right) = -z \phi\left(z\right) )]] [[BR]] [[BR]]
    107116
     117''Logarithm of likelihood'': [[BR]]
    108118  [[LatexEquation( L\left(\beta\right)=\underset{i}{\sum}w_{i}\left(y_{i}\ln\left(\Phi\left(x_{i}\beta\right)\right)+\left(1-y_{i}\right)\ln\left(\Phi\left(-x_{i}\beta\right)\right)\right) )]]
    109119
     120''Gradient'': [[BR]]
    110121  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{j}}=\underset{i}{\sum}w_{i}\left(y_{i}\frac{\phi\left(x_{i}\beta\right)}{\Phi\left(x_{i}\beta\right)}-\left(1-y_{i}\right)\frac{\phi\left(x_{i}\beta\right)}{\Phi\left(-x_{i}\beta\right)}\right)x_{ij} )]]
    111122
     123''Hessian'': [[BR]]
    112124  [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial_{j}}=-\underset{k}{\sum}w_{k}\phi\left(x_{k}\beta\right)\left(y_{k}\frac{z\Phi\left(x_{k}\beta\right)+\phi\left(x_{k}\beta\right)}{\Phi^{2}\left(x_{k}\beta\right)}+\left(1-y_{k}\right)\frac{-z \Phi\left(-x_{k}\beta\right)+\phi\left(x_{k}\beta\right)}{\Phi\left(-x_{k}\beta\right)^{2}}\right)x_{ik}x_{jk} )]]
     125
    113126
    114127To avoid numerical problems will use the following equality