[[PageOutline]] = Package GrzLinModel = Max-likelihood and bayesian estimation of [http://en.wikipedia.org/wiki/Generalized_linear_model generalized linear models]. == Weighted Generalized Regresions == Abstract class [source:/tolp/OfficialTolArchiveNetwork/GrzLinModel/WgtReg.tol @WgtReg] is the base to inherit weighted generalized linear regressions as poisson, binomial, logit, probit or any other, given just the scalar distribution function [[LatexEquation( F )]] and the corresponding density function [[LatexEquation( f )]]. In a weighted regression each row of input data has a distinct weight in the likelihood function. For example, it can be very usefull to handle with data extrated from an stratified sample. Let be * [[LatexEquation( X\in\mathbb{R}^{m\times n} )]] the regression input matrix * [[LatexEquation( w\in\mathbb{R}^{m} )]] the vector of weights of each register * [[LatexEquation( y\in\mathbb{R}^{m} )]] the regression output matrix * [[LatexEquation( \beta\in\mathbb{R}^{n} )]] the regression coefficients * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction * [[LatexEquation( g )]] the link function * [[LatexEquation( f )]] the density fuciton of a distribution of the [http://en.wikipedia.org/wiki/Exponential_family exponential family] Then we purpose that the average of the output is the inverse of the link function applyied to the linear predictor [[LatexEquation( E\left[y\right]=\mu=g^{-1}\left(X\beta\right) )]]