close
Warning:
Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.
- Timestamp:
-
Mar 30, 2011, 4:06:02 PM (14 years ago)
- Author:
-
Víctor de Buen Remiro
- Comment:
-
--
Legend:
- Unmodified
- Added
- Removed
- Modified
-
v16
|
v17
|
|
38 | 38 | [[LatexEquation( f\left(y;\mu\right) )]] |
39 | 39 | |
40 | | For each row [[LatexEquation( k=1 \dots n)]] we will know the output [[LatexEquation( y_k )]] |
| 40 | For each row [[LatexEquation( i=1 \dots n)]] we will know the output [[LatexEquation( y_i )]] |
41 | 41 | and the average |
42 | 42 | |
43 | | [[LatexEquation( \mu_{k}=g^{-1}\left(\eta_{k}\right)=g^{-1}\left(x_{k}\beta\right) )]] |
| 43 | [[LatexEquation( \mu_i=g^{-1}\left(\eta_i\right)=g^{-1}\left(x_i\beta\right) )]] |
44 | 44 | |
45 | 45 | Each particular distribution may have its own additional parameters which will be treated |
… |
… |
|
53 | 53 | * the first and second partial derivatives of log-density function respect to the linear prediction [[BR]] [[BR]] |
54 | 54 | [[LatexEquation( \frac{\partial\ln f}{\partial\eta},\frac{\partial^{2}\ln f}{\partial\eta^{2}} )]] |
| 55 | |
| 56 | The likelihood function of the weigthed regression is then |
| 57 | |
| 58 | [[LatexEquation( lk\left(\beta\right)=\overset{m}{\underset{i}{\prod}}f_{i}^{w_{i}}\:\wedge f_{i}=f\left(y_{i};\mu_{i}\right)\:\forall i=1\ldots m )]] |
| 59 | |
| 60 | and its logarithm |
| 61 | |
| 62 | [[LatexEquation( L\left(\beta\right)=\ln\left(lk\left(\beta\right)\right)=\overset{m}{\underset{i}{\sum}}w_{i}f_{i} )]] |
| 63 | |
| 64 | The gradient of the logarithm of the likelihood function will be |
| 65 | |
| 66 | [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{j}}=\frac{\partial L\left(\beta\right)}{\partial\eta}\frac{\partial\eta}{\partial\beta_{j}}=\overset{m}{\underset{i}{\sum}}w_{i}\frac{\partial\ln f_{k}}{\partial\eta}x_{ij} )]] |
| 67 | |
| 68 | and the hessian is |
| 69 | |
| 70 | [[LatexEquation( \frac{\partial L\left(\beta\right)}{\partial\beta_{i}\partial\beta_{j}}=\underset{i}{\sum}w_{i}\frac{\partial^{2}\ln f_{i}}{\partial\eta^{2}}x_{ik}x_{jk} )]] |
55 | 71 | |
56 | 72 | This class also implements these common features |