| | 1 | [[PageOutline]] |
| | 2 | |
| | 3 | = Package GrzLinModel = |
| | 4 | |
| | 5 | Max-likelihood and bayesian estimation of |
| | 6 | [http://en.wikipedia.org/wiki/Generalized_linear_model generalized linear models]. |
| | 7 | |
| | 8 | == Weighted Generalized Regresions == |
| | 9 | |
| | 10 | Abstract class |
| | 11 | [source:/tolp/OfficialTolArchiveNetwork/GrzLinModel/WgtReg.tol @WgtReg] |
| | 12 | is the base to inherit weighted generalized linear regressions as poisson, |
| | 13 | binomial, logit, probit or any other, given just the scalar distribution |
| | 14 | function [[LatexEquation( F )]] and the corresponding density function |
| | 15 | [[LatexEquation( f )]]. In a weighted regression each row of input data |
| | 16 | has a distinct weight in the likelihood function. For example, it can be |
| | 17 | very usefull to handle with data extrated from an stratified sample. |
| | 18 | |
| | 19 | Let be |
| | 20 | * [[LatexEquation( X\in\mathbb{R}^{m\times n} )]] the regression input matrix |
| | 21 | * [[LatexEquation( w\in\mathbb{R}^{m} )]] the vector of weights of each register |
| | 22 | * [[LatexEquation( y\in\mathbb{R}^{m} )]] the regression output matrix |
| | 23 | * [[LatexEquation( \beta\in\mathbb{R}^{n} )]] the regression coefficients |
| | 24 | * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction |
| | 25 | * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction |
| | 26 | * [[LatexEquation( g )]] the link function |
| | 27 | * [[LatexEquation( f )]] the density fuciton of a distribution of the |
| | 28 | [http://en.wikipedia.org/wiki/Exponential_family exponential family] |
| | 29 | |
| | 30 | Then we purpose that the average of the output is the inverse of the link function |
| | 31 | applyied to the linear predictor |
| | 32 | |
| | 33 | [[LatexEquation( E\left[y\right]=\mu=g^{-1}\left(X\beta\right) )]] |
| | 34 | |