close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Initial Version and Version 1 of OfficialTolArchiveNetworkGrzLinModel


Ignore:
Timestamp:
Jan 24, 2011, 5:58:22 PM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkGrzLinModel

    v1 v1  
     1[[PageOutline]]
     2
     3= Package GrzLinModel =
     4
     5Max-likelihood and bayesian estimation of
     6[http://en.wikipedia.org/wiki/Generalized_linear_model generalized linear models].
     7
     8== Weighted Generalized Regresions ==
     9
     10Abstract class
     11[source:/tolp/OfficialTolArchiveNetwork/GrzLinModel/WgtReg.tol @WgtReg]
     12is the base to inherit weighted generalized linear regressions as poisson,
     13binomial, logit, probit or any other, given just the scalar distribution
     14function [[LatexEquation( F )]] and the corresponding density function
     15[[LatexEquation( f )]]. In a weighted regression each row of input data
     16has a distinct weight in the likelihood function. For example, it can be
     17very usefull to handle with data extrated from an stratified sample.
     18
     19Let be
     20 * [[LatexEquation( X\in\mathbb{R}^{m\times n} )]] the regression input matrix
     21 * [[LatexEquation( w\in\mathbb{R}^{m} )]] the vector of weights of each register
     22 * [[LatexEquation( y\in\mathbb{R}^{m} )]] the regression output matrix
     23 * [[LatexEquation( \beta\in\mathbb{R}^{n} )]] the regression coefficients
     24 * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction
     25 * [[LatexEquation( \eta=X\beta\in\mathbb{R}^{n} )]] the linear prediction
     26 * [[LatexEquation( g )]] the link function
     27 * [[LatexEquation( f )]] the density fuciton of a distribution of the
     28[http://en.wikipedia.org/wiki/Exponential_family exponential family]
     29
     30Then we purpose that the average of the output is the inverse of the link function
     31applyied to the linear predictor
     32
     33  [[LatexEquation( E\left[y\right]=\mu=g^{-1}\left(X\beta\right) )]]
     34