close Warning: Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.

Changes between Version 23 and Version 24 of OfficialTolArchiveNetworkBysPrior


Ignore:
Timestamp:
Jun 14, 2011, 3:50:52 PM (14 years ago)
Author:
Víctor de Buen Remiro
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • OfficialTolArchiveNetworkBysPrior

    v23 v24  
    136136 [[LatexEquation( \left(\frac{\partial^{2}L\left(x\right)}{\partial x_{i}\partial x_{j}}\right)_{i,j=1\ldots n}=-C\Sigma^{-1}C^{T} )]]
    137137
     138==== Hierarquical relation of simple homogenity ====
     139
     140If we want to express that a certain group of variables [[LatexEquation( \left\{ \beta_{i}\right\} _{i=1\ldots k} )]] are independent and normally distributed with unknow average and fixed standard deviation the usual way is to define a new latent variable [[LatexEquation( \alpha )]] representing the average
     141
     142   [[LatexEquation( \beta_{i}\sim N\left(\alpha,\sigma^{2}I\right) )]]
     143
     144If there is not posible to use a hierarquical simulation engine we can rewrite these relations removing the latent variable and setting that each variable must be around the average of the rest of them with certain covariance matrix
     145
     146   [[LatexEquation( \beta_{i+1}-\frac{1}{k-1}\underset{j\neq i}{\sum}\beta_{j}\sim N\left(0,\Sigma\right) )]]
     147
     148Then it's posible to write this as an special case of multinormal prior over a linear combination of variables taking
     149
     150   [[LatexEquation( C=\frac{1}{n-1}\left(\begin{array}{ccccc}n-1 & -1 & \cdots & -1 & -1\\-1 & n-1 & \ddots & \vdots & \vdots\\\vdots & \ddots & \ddots & -1 & -1\\-1 & \cdots & -1 & n-1 & -1\end{array}\right)\in\mathbb{R}^{\left(k-1\right)\times k} )]]
     151
     152   [[LatexEquation( \mu=C\beta=\left(\begin{array}{c}0\\0\\\vdots\\0\end{array}\right)\in\mathbb{R}^{k} )]]
     153
     154   [[LatexEquation( \Sigma=\sigma^{2}CC^{T}=\frac{n\sigma^{2}}{\left(n-1\right)^{2}}\left(\begin{array}{cccc}n-1 & -1 & \cdots & -1\\-1 & n-1 & \ddots & \vdots\\\vdots & \ddots & \ddots & -1\\-1 & \cdots & -1 & n-1\end{array}\right)\in\mathbb{R}^{\left(k-1\right)\times\left(k-1\right)} )]]
     155
    138156
    139157=== Transformed prior ===