close
Warning:
Can't synchronize with repository "(default)" (/var/svn/tolp does not appear to be a Subversion repository.). Look in the Trac log for more information.
- Timestamp:
-
Dec 26, 2010, 12:46:58 AM (15 years ago)
- Author:
-
Víctor de Buen Remiro
- Comment:
-
--
Legend:
- Unmodified
- Added
- Removed
- Modified
-
|
v9
|
v10
|
|
| 78 | 78 | that is equivalent to the full set of linear inequations. |
| 79 | 79 | |
| 80 | | ||If we define [[BR]][[BR]] [[LatexEquation( d\left(x\right)=Ax-a=\left(d_{k}\left(x\right)\right)_{k=1\ldots r} )]] then [[br]][[br]] [[LatexEquation( D_{k}\left(x\right)=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ d_{k}\left(x\right) & \forall d_{k}\left(x\right)>0\end{cases} )]] [[br]][[br]] is a continuous function in [[LatexEquation( \mathbb{R}^{n} )]] and [[br]][[br]] [[LatexEquation( D_{k}^{3}\left(x\right)=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ d_{k}^{3}\left(x\right) & \forall d_{k}\left(x\right)>0\end{cases} )]] [[br]][[br]] is continuous and differentiable in [[LatexEquation( \mathbb{R}^{n} )]] [[br]][[br]] [[LatexEquation( \frac{\partial D_{k}^{3}\left(x\right)}{\partialx_{i}}=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ 3d_{k}^{2}\left(x\right)A_{ki} & \forall d_{k}\left(x\right)>0\end{cases} )]] || [[Image(source:/tolp/OfficialTolArchiveNetwork/BysPrior/doc/image004.png)]] || |
| | 80 | ||If we define [[BR]][[BR]] [[LatexEquation( d\left(x\right)=Ax-a=\left(d_{k}\left(x\right)\right)_{k=1\ldots r} )]] then [[br]][[br]] [[LatexEquation( D_{k}\left(x\right)=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ d_{k}\left(x\right) & \forall d_{k}\left(x\right)>0\end{cases} )]] [[br]][[br]] is a continuous function in [[LatexEquation( \mathbb{R}^{n} )]] and [[br]][[br]] [[LatexEquation( D_{k}^{3}\left(x\right)=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ d_{k}^{3}\left(x\right) & \forall d_{k}\left(x\right)>0\end{cases} )]] [[br]][[br]] is continuous and differentiable in [[LatexEquation( \mathbb{R}^{n} )]] [[br]][[br]] [[LatexEquation( \frac{\partial D_{k}^{3}\left(x\right)}{\partial x_{i}}=\begin{cases} 0 & \forall d_{k}\left(x\right)\leq0\\ 3d_{k}^{2}\left(x\right)A_{ki} & \forall d_{k}\left(x\right)>0\end{cases} )]] || [[Image(source:/tolp/OfficialTolArchiveNetwork/BysPrior/doc/image004.png)]] || |
| 81 | 81 | |
| 82 | 82 | The feasibility condition can be defined as a single nonlinear |
| … |
… |
|
| 87 | 87 | The gradient of this function is |
| 88 | 88 | |
| 89 | | [[LatexEquation( \frac{\partial g\left(x\right)}{\partialx_{i}}=3\underset{k=1}{\overset{r}{\sum}}D_{k}^{2}\left(x\right)A_{ki} )]] |
| | 89 | [[LatexEquation( \frac{\partial g\left(x\right)}{\partial x_{i}}=3\underset{k=1}{\overset{r}{\sum}}D_{k}^{2}\left(x\right)A_{ki} )]] |
| 90 | 90 | |
| 91 | 91 | == Random priors == |
| … |
… |
|
| 113 | 113 | The gradient is |
| 114 | 114 | |
| 115 | | [[LatexEquation( \left(\frac{\partial L\left(x\right)}{\partialx_{i}}\right)_{i=1\ldots n}=-\Sigma^{-1}\left(x-\mu\right) )]] |
| | 115 | [[LatexEquation( \left(\frac{\partial L\left(x\right)}{\partial x_{i}}\right)_{i=1\ldots n}=-\Sigma^{-1}\left(x-\mu\right) )]] |
| 116 | 116 | |
| 117 | 117 | and the hessian |
| 118 | 118 | |
| 119 | | [[LatexEquation( \left(\frac{\partial^{2}L\left(x\right)}{\partialx_{i}\partialx_{j}}\right)_{i,j=1\ldots n}=-\Sigma^{-1} )]] |
| | 119 | [[LatexEquation( \left(\frac{\partial^{2}L\left(x\right)}{\partial x_{i}\partial x_{j}}\right)_{i,j=1\ldots n}=-\Sigma^{-1} )]] |
| 120 | 120 | |
| 121 | 121 | |
| … |
… |
|
| 168 | 168 | If we know the first and second derivatives of the transformation |
| 169 | 169 | |
| 170 | | [[LatexEquation( \frac{\partial\gamma_{k}}{\partialx_{i}} )]] |
| | 170 | [[LatexEquation( \frac{\partial\gamma_{k}}{\partial x_{i}} )]] |
| 171 | 171 | |
| 172 | | [[LatexEquation( \frac{\partial^{2}\gamma_{k}}{\partialx_{i}\partialx_{j}} )]] |
| | 172 | [[LatexEquation( \frac{\partial^{2}\gamma_{k}}{\partial x_{i}\partial x_{j}} )]] |
| 173 | 173 | |
| 174 | 174 | the we can calculate the original gradient and the hessian after the gradient |
| 175 | 175 | and the hessian of the transformed prior as following |
| 176 | 176 | |
| 177 | | [[LatexEquation( \frac{\partial L\left(x\right)}{\partialx_{i}}=\underset{k=1}{\overset{K}{\sum}}\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partialx_{i}} )]] |
| | 177 | [[LatexEquation( \frac{\partial L\left(x\right)}{\partial x_{i}}=\underset{k=1}{\overset{K}{\sum}}\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partial x_{i}} )]] |
| 178 | 178 | |
| 179 | | [[LatexEquation( \frac{\partial L^{2}\left(x\right)}{\partialx_{i}\partialx_{j}}=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partialx_{j}}\frac{\partial\gamma_{k}}{\partialx_{i}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partialx_{i}\partialx_{j}}\right)=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partialx_{i}}\frac{\partial\gamma_{k}}{\partialx_{j}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partialx_{i}\partialx_{j}}\right) )]] |
| | 179 | [[LatexEquation( \frac{\partial L^{2}\left(x\right)}{\partial x_{i}\partial x_{j}}=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial x_{j}}\frac{\partial\gamma_{k}}{\partial x_{i}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partial x_{i}\partial x_{j}}\right)=\underset{k=1}{\overset{K}{\sum}}\left(\frac{\partial^{2}L^{*}\left(\gamma\right)}{\partial\gamma_{k}\partial\gamma_{k}}\frac{\partial\gamma_{k}}{\partial x_{i}}\frac{\partial\gamma_{k}}{\partial x_{j}}+\frac{\partial L^{*}\left(\gamma\right)}{\partial\gamma_{k}}\frac{\partial^{2}\gamma_{k}}{\partial x_{i}\partial x_{j}}\right) )]] |
| 180 | 180 | |
| 181 | 181 | Thus it is possible to define a variety of information a priori from a |